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Mixture of Gaussians and Bayes’ classification ‘eznns Agorithms and

</
“A)a) Gaussian not normalized: the isolines
* Covariance matrix identical represent the same probability !

* Centers at the same height

* Same number of points

Linear Boundary equidistant
from the two centers
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Mixture of Gaussians and Bayes’ classification ‘eaning Aigorithme o

“A)b)
e Covarilance matrix identical
* Centers at the same height

* Same number of points

Linear Boundary equidistant
from the two centers
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Mixture of Gaussians and Bayes’ classification ‘eznns Agorithms and

*A)c)

* Full type covariance matrices

* Same number of points
* The green class has a larger variance than

the red class along its 1%t eigenvector. It -
overcomes the red class far from the data

along this direction

* Similarly the red class overcomes the
green one along its 15t eigenvector far from
the data

Non-linear boundary
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Mixture of Gaussians and Bayes’ classification ‘eaming algoritms anc

Systems Laboratory

*»B) What happen to the boundary in case Aa) and Ab) if the classes have
a much different number of points ?

p(zly =i)p(y = 1)
p(z)
* Classification boundary 1s obtained by setting the likelihood ratio to 1

ply=1lz) plzly=1ply=1) p(zly=1) p(y = 1)

* Bayes rule:

ply = ilz) = =12

— 3 =
ply=2lz) plzly=2)ply=2) plzly=2) ply=2)
+ Applying the logarithm gives: \ /
—(z — p" )T (@ — ph)" +logp(y =1) = —(z — T +logp(y = 2)

N\ / Va \
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Mixture of Gaussians and Bayes’ classification ‘eaming algoritms anc

Systems Laboratory

*+B) What happen to the boundary in case Aa) and Ab) if the classes
have a much different number of points ?

(2) (b) (©
The boundary 1s moving based on the ratio between the two classes
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Systems Laboratory

*+C) Boundary between normalized spherical and diagonal Gaussian

Gausgian normalized: the 1solines do
not rgpresent the same probability !

X\/\ Xp :c—)TZ (z — )

.(\.
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. Learning Algorithms and
computational costs

Systems Laboratory

**A) Joes trains a GMM on each class and evaluates the performance on the
training set. From the performance obtained he decides to use 10 gaussians.
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Learning Algorithms and

ComPUtational COStS Systems Laboratory

¢+ A) Using a too high number of gaussians will make the model overfitting

* Model should be learned on training
set and evaluated on test set: K-fold
cross validation

» Selection criterion like BIC can be
used to also avoid overfitting




E P F L Overtfitting, Generalization and LA S A

Learning Algorithms and

ComPUtational COStS Systems Laboratory

*+B) Example of dataset and choice of GMM leading to overfitting
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¢+ C) Number of parameters to estimate for GMM

 Full Gaussian: KX (N + N(NH)) + K -1 |
L 2 I , K: Number of gaussians
! ! N: Input dimension
Mean Covarlgnce Weights
matrix

* Diagonal Gaussian: KX(N+N)+ K -1
* Spherical Gaussian: KX(N+ 1)+ K —1

10
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*+C) Computational cost per iteration for GMM update step

2

> p(klz7, 00) — O(KN“M)

2k = diag((0F TV, .., (05 ET)2) — O(KNM)
2, " = diag((*)) -~ O(KM)

where

j j t+1
(D2 _ L PRI, 09 (i B2

; S kla, 60) , Vi=1.N K: Number of gaussians
J ¢ . .
are the variances along each dimension and N: IHPU—t dlmenSIOn
| | M: Number of points
reryg _ Zypad 00t — I b

NZJ' p(klzi, ©W)

is the variance averaged over all dimensions (isotropic). 1



