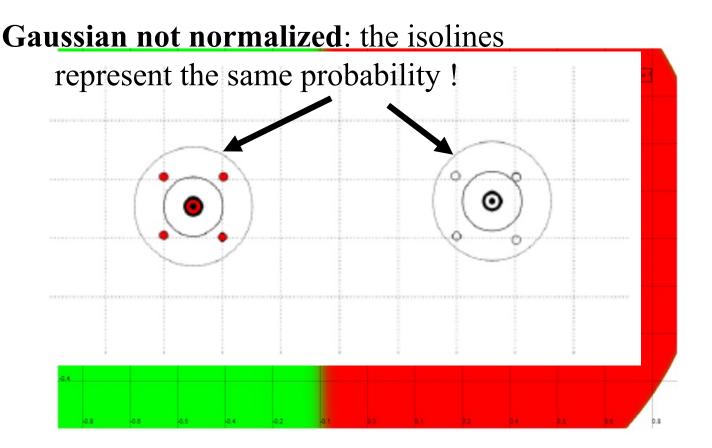


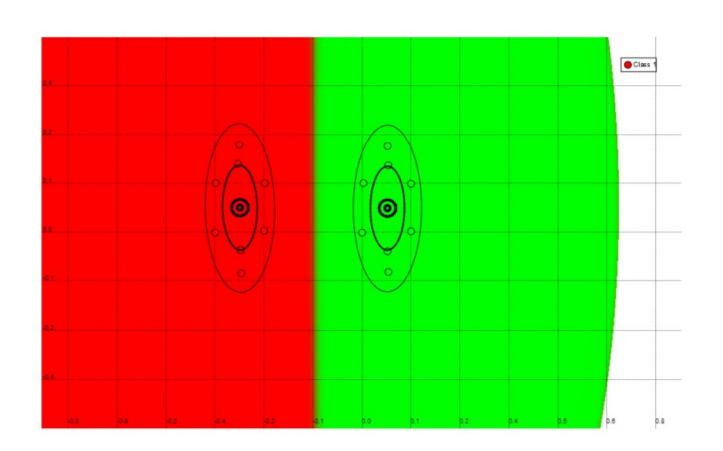
- *****A) a)
- Covariance matrix identical
- Centers at the same height
- Same number of points

Linear Boundary equidistant from the two centers



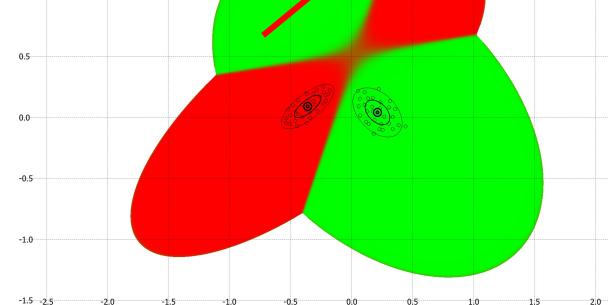
- **4** A) b)
- Covariance matrix identical
- Centers at the same height
- Same number of points

Linear Boundary equidistant from the two centers



A(c)

- Full type covariance matrices
- Same number of points
- The green class has a larger variance than the red class along its 1st eigenvector. It overcomes the red class far from the data along this direction
- Similarly the red class overcomes the green one along its 1st eigenvector far from the data



Non-linear boundary

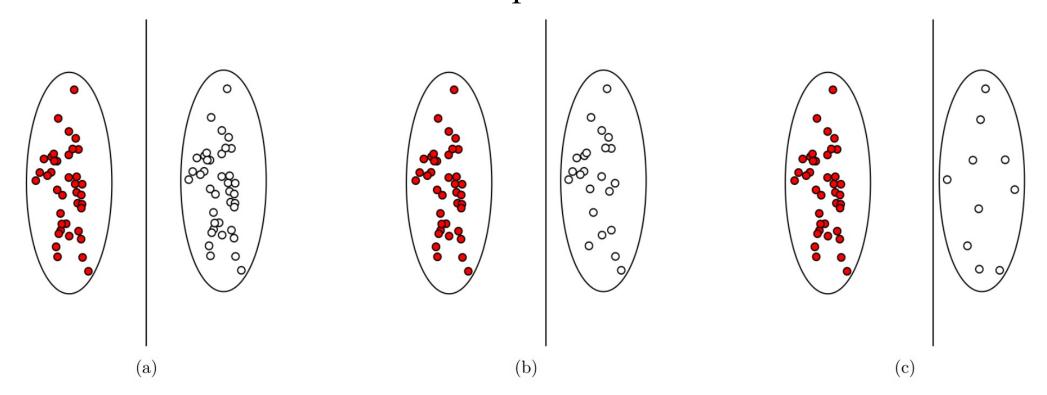
- ❖B) What happen to the boundary in case Aa) and Ab) if the classes have a much different number of points?
- Bayes rule: $p(y = i|x) = \frac{p(x|y = i)p(y = i)}{p(x)}, \quad i = 1, 2.$
- Classification boundary is obtained by setting the likelihood ratio to 1

$$\frac{p(y=1|x)}{p(y=2|x)} = \frac{p(x|y=1)p(y=1)}{p(x|y=2)p(y=2)} = \frac{p(x|y=1)}{p(x|y=2)} \times \frac{p(y=1)}{p(y=2)} = 1$$

• Applying the logarithm gives:

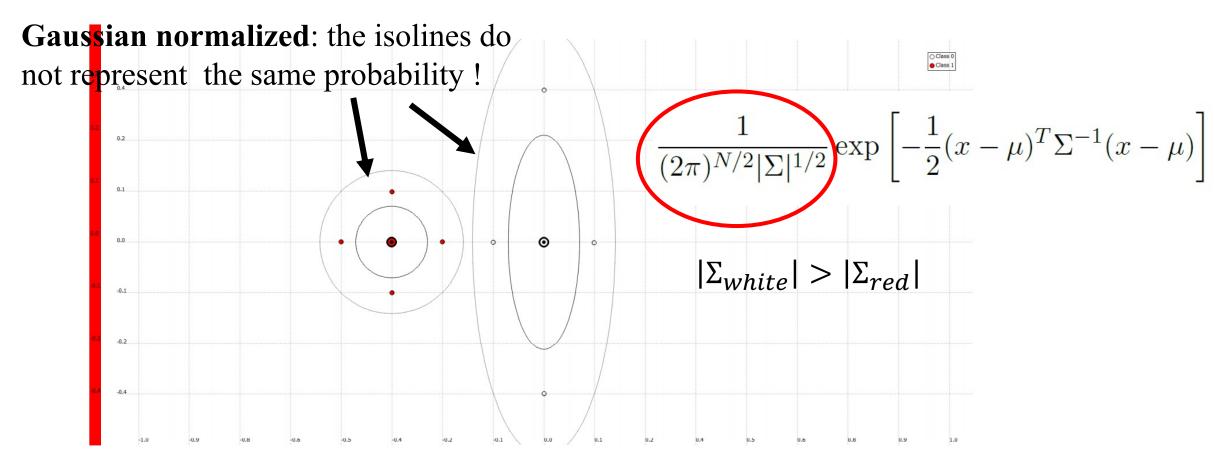
$$-(x-\mu^1)\Sigma^{-1}(x-\mu^1)^T + \log p(y=1) = -(x-\mu^2)\Sigma^{-1}(x-\mu^2)^T + \log p(y=2)$$

❖B) What happen to the boundary in case Aa) and Ab) if the classes have a much different number of points?

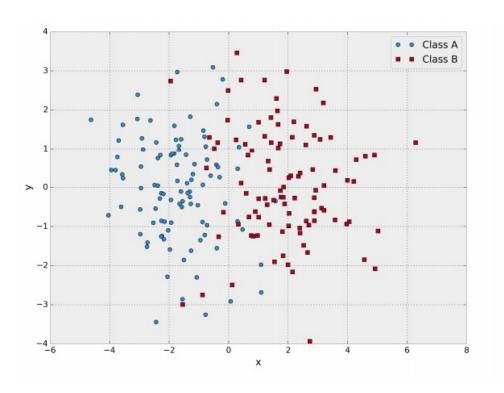


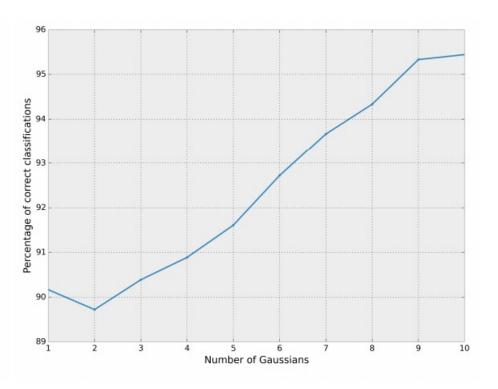
The boundary is moving based on the ratio between the two classes

*C) Boundary between normalized spherical and diagonal Gaussian

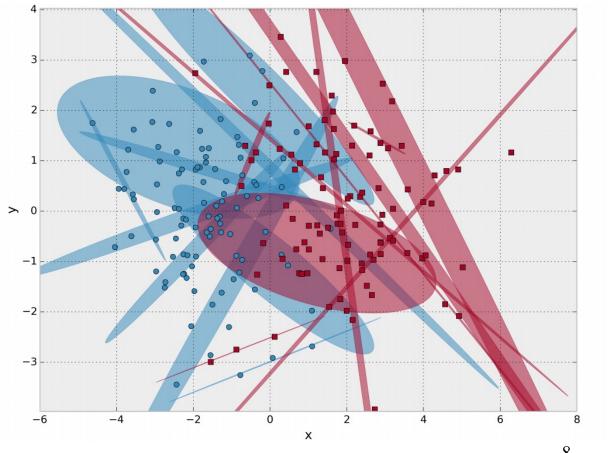


A) Joes trains a GMM on each class and evaluates the performance on the **training set**. From the performance obtained he decides to use **10 gaussians**.

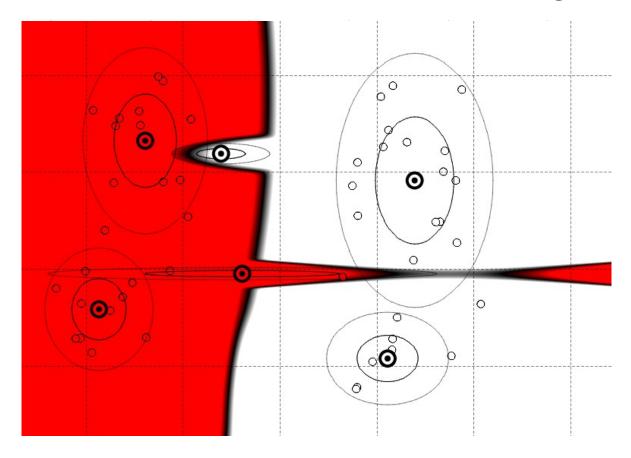




- ❖A) Using a too high number of gaussians will make the model **overfitting**
- Model should be learned on training set and evaluated on test set: K-fold cross validation
- Selection criterion like BIC can be used to also avoid overfitting



❖B) Example of dataset and choice of GMM leading to overfitting



Overfitting, Generalization and computational costs

matrix

*C) Number of parameters to estimate for GMM

• Full Gaussian:
$$K \times \left(N + \frac{N(N+1)}{2}\right) + K - 1$$

Mean Covariance Weights

K: Number of gaussians

N: Input dimension

• Diagonal Gaussian: $K \times (N + N) + K - 1$

• Spherical Gaussian: $K \times (N+1) + K - 1$

Overfitting, Generalization and computational costs

C) Computational cost per iteration for GMM update step

$$\Sigma_{\text{full}}^{k}{}^{(t+1)} = \frac{\sum_{j} p(k|x^{j}, \Theta^{(t)})(x^{j} - \mu^{k(t+1)})(x^{j} - \mu^{k(t+1)})^{T}}{\sum_{j} p(k|x^{j}, \Theta^{(t)})} \longrightarrow O(KN^{2}M)$$

$$\Sigma_{\text{dia}}^{k}{}^{(t+1)} = \text{diag}((\sigma_{1}^{k(t+1)})^{2}, ..., (\sigma_{N}^{k(t+1)})^{2}) \longrightarrow O(KNM)$$

$$\Sigma_{\text{iso}}^{k}{}^{(t+1)} = \text{diag}((\sigma^{k(t+1)})^{2}) \longrightarrow O(KM)$$

where

$$(\sigma_i^{k(t+1)})^2 = \frac{\sum_j p(k|x^j, \Theta^{(t)}) (x_i^j - \mu_i^{k(t+1)})^2}{\sum_j p(k|x^j, \Theta^{(t)})}, \quad \forall i = 1..N$$

are the variances along each dimension and

$$(\sigma^{k(t+1)})^2 = \frac{\sum_j p(k|x^j, \Theta^{(t)}) \|x^j - \mu^{k(t+1)}\|^2}{N \sum_j p(k|x^j, \Theta^{(t)})}$$

K: Number of gaussians

N: Input dimension

M: Number of points